구글 머신러닝 스터디 사전준비

Google Machine Learning Crash Course

필수사항

머신러닝 단기집중과정에는 머신러닝에 관한 사전 지식이 필요하지 않습니다. 하지만 제시된 개념을 이해하고 실습을 완료하기 위해서는 다음과 같은 필수사항을 충족하는 것이 좋습니다.

  • 기본 대수학 개념 숙지. 변수와 계수, 선형 방정식, 함수의 그래프, 히스토그램을 알고 있어야 합니다. 로그, 미분과 같은 고급 수학적 개념에 익숙하면 유용하지만 꼭 필요하지는 않습니다.
  • 프로그래밍 기본사항 숙지 및 Python을 이용한 코딩 경험. 머신러닝 단기집중과정의 프로그래밍 연습은 텐서플로우를 이용하여 Python으로 코딩되어 있습니다. 텐서플로우 사용 경험이 필요하지는 않지만 함수 정의/호출, 목록과 사전, 루프, 조건식 등 기본 프로그래밍 구성체가 포함된 Python 코드를 읽고 쓰는 데 문제가 없어야 합니다.

사전 작업

프로그래밍 실습은 브라우저에서 바로 실행되므로 설정이 필요하지 않습니다. Colaboratory 플랫폼을 이용합니다. Colaboratory는 대부분의 주요 브라우저에서 지원되며 Chrome 및 Firefox 데스크톱 버전을 대상으로 가장 꼼꼼한 테스트가 이루어졌습니다. 실습을 다운로드하여 오프라인에서 하시려면 다음의 안내에서 로컬 환경 설정에 관해 자세히 알아보세요.

Pandas 시작하기

머신러닝 단기집중과정의 프로그램 실습에서는 Pandas 라이브러리를 사용하여 데이터 세트를 조작합니다. Pandas에 익숙하지 않다면 실습에 사용된 주요 Pandas 기능이 설명된 실습에 사용된 주요 Pandas 기능이 설명된 Pandas 빠른 가이드 를 참조하세요.

낮은 수준의 텐서플로우 기본 사항

머신러닝 단기집중과정의 프로그래밍 실습에서는 고급 tf.estimator API를 사용하여 모델을 구성합니다. 처음부터 텐서플로우 모델을 구성하려면 다음 가이드를 완료하세요.

주요 개념 및 도구

머신러닝 단기집중과정에서는 다음과 같은 개념과 도구를 설명하고 적용합니다. 자세한 내용은 연결된 자료를 참조하세요.

수학

대수학, 선형대수, 통계 등의 지식이 있으면 좋습니다.

대수학
선형 대수학
삼각법
통계
적분학(선택 사항, 고급 주제의 경우)

Python 프로그래밍

기본과 중급 수준이 요구됩니다.

기본 Python

다음과 같은 Python 기본 사항이 Python 가이드에 설명되어 있습니다.

중급 Python

다음과 같은 고급 Python 기능도 Python 가이드에 설명되어 있습니다.

타사 Python 라이브러리

머신러닝 단기집중과정 코드 예에서는 타사 라이브러리의 다음과 같은 기능을 사용합니다. 이러한 라이브러리에 관한 사전 지식은 필요하지 않습니다. 필요할 때 알아야 하는 것을 찾을 수 있습니다.

Matplotlib(데이터 시각화용)
Seaborn(히트맵용)
Pandas(데이터 조작용)
NumPy(낮은 수준의 수학 연산용)
scikit-learn(평가 측정항목용)

Bash 터미널/Cloud Console

로컬 머신이나 Cloud Console에서 프로그래밍 실습을 실행하려면 쉽게 명령줄을 사용할 수 있어야 합니다.